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Abstract— A significant amount of work has been reported
in the area of visual servoing during the last decade. However,
most of the contributions are applied in cases of holonomic
robots. More recently, the use of visual feedback for control of
nonholonomic vehicles has been reported. Some of the examples
are docking and parallel parking maneuvers of cars or vision-
based stabilization of a mobile manipulator to a desired pose
with respect to a target of interest. Still, many of the approaches
are mostly interested in the control part of visual servoing loop
considering very simple vision algorithms based on artificial
markers. In this paper, we present an approach for nonholonomic
visual servoing based on epipolar geometry. The method facil-
itates a classical teach-by-showing approach where a reference
image is used to define the desired pose (position and orientation)
of the robot. The major contribution of the paper is the design
of the control law that considers nonholonomic constraints of
the robot as well as the robust feature detection and matching
process based on scale and rotation invariant image features.
An extensive experimental evaluation has been performed in a
realistic indoor setting and the results are summarized in the
paper.

I. I NTRODUCTION

The field of service robotics is a fast growing one. Apart
from building reliable platforms, mobile manipulation rep-
resents one of the biggest challenges since it encompasses
research problems such as e.g. navigation, obstacle avoidance,
visual servoing, object grasping and manipulation. Although
there have been a significant amount of work reported in
each of the above areas, there are still no systems that can
robustly and completely safely move in the environment and
manipulate objects at the same time.

Some of the key problems to perform mobile manipulation
tasks are the level of cooperation between different subsystems
and the amount of sensors required. It is generally accepted
that machine vision is one of the most important sensory
modalities for navigation, object manipulation and grasping
purposes. Hence, one of the major building blocks of a mobile
manipulation systems is visual servoing [1]. During the last
few years, an enormous amount of research has been reported
in visual servoing, [2]–[6]. However, many of the above
references concentrate mainly on problems and differences
between 2 1/2 D, image and position based visual servoing
assuming that there are no constraints on the robot motion
itself.
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In terms of mobile manipulation it is very important to take
into account the motion of the base that carries a manipulator
or a pan-tilt unit. Such platforms are commonly nonholonomic
and most of the above approaches are unsuitable in this case.
Some researches have concentrated on control problem related
to mobile platforms, [7]–[10]. These will be presented in more
detail in the next section where we compare them to our
approach.

Our method facilitates a classical teach-by-showing visual
servo approach based on epipolar geometry estimation. The
proposed approach is suited for a nonholonomic mobile plat-
form and does not require complete camera calibration or
any specific knowledge of the scene geometry. An extensive
experimental evaluation performed in a realistic indoor setting
shows the effectiveness of our method.

This paper is organized as follows. In Section II we review
the related work and outline the contributions of our approach.
In Section III we present the estimation of epipolar geometry
based on scale invariant image features. Visual and motion
models are described in Section IV followed by the design of
the control law in Section V. Experimental evaluation is given
in Section VI. Conclusion and avenues for future research are
given in Section VII.

II. RELATED WORK

The basic idea of teach-by-showing visual servoing is to
control a robot to a specific pose in the environment by reg-
ulating to zero an error term which is estimated by matching
image data between the current and the reference position.
This approach has for sometime now been the most common
way of controlling robots since it does not have to deal with
hard vision problems such as scene segmentation or place
recognition.

An early example of this approach is presented in [11].
Here, image-based navigation is considered where the motion
control is performed by recovering the relative pose of the
robot with respect to the desired one. This relative pose
is estimated through the essential matrix, assuming that the
internal parameters of the camera are precisely known. In
comparison, our method does not require perfect knowledge of
the camera calibration parameters. In addition, our approach
does not require the computation of any of the 3D distances
since the control is based directly on the trajectory of the
epipoles. In [11] the distance to the target is determined as
a number of steps by using two consecutive images, being
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each step of the same length as the one performed between
the two images used. In our method the motion at every step
is independent of the previous steps. This allows to perform
auxiliary tasks or to avoid obstacles while navigating without
affecting the convergence to the target.

Another approach presented by [9] is based on the epipolar
geometry and exploits the auto-epipolar property. It does not
require any information about the internal camera parame-
ters. However the algorithm developed is designed only for
holonomic robots. The approach presented in [10] extends
the auto-epipolar visual servoing method of [9] to cope with
nonholonomic constraints. The motion is performed in three
sequential steps to reach the target position. The second step,
which deals with the problem of nonholonomic constraints,
is based on the epipolar geometry and consists in an input-
output feedback linearizing control law. However, the motion
performed in the second step drives the robot from and not
to the target (just moving away) before turning back to it in
the final step, which is not the intuitive behaviour we might
expect. This is one of the basis of our work, which is focused
in obtaining a direct motion towards the target.

Classically the problem of homing is solved by using
epipolar geometry, but it is ill conditioned with planar scenes,
which occur frequently in man-made environments. In ad-
dition, images provided during visual servoing can result
in small baselines, where the estimation of the fundamental
matrix also gives bad results. It has been shown that working
with homographies eliminates this problem [8], [12].

III. F ROM IMAGES TO EPIPOLES

In this section, we shortly describe the computation of
epipolar geometry as well as visual features used in the
process.

A. Feature Extraction and Matching

In a recent study, Mikolajczyk and Schmid [13] analyzed a
large number of interest point descriptors and their behaviors
under changes, such as scale and illumination change. The
descriptor that turned out to be most robust in this study
was the Scale Invariant Feature Transform - SIFT descriptor
originally proposed in [14]. It was also concluded that the
point detector used was less significant. In the current imple-
mentation, we use SIFT features as originally developed by
[14] where, primarily for reasons of low computational cost,
the descriptor uses feature points determined by the peaks of
a series of difference of Gaussians on varying scales. In [15],
the so called Harris-Laplace features that respond to regions
of high curvature, instead of blob-like image structures as in
original SIFT has been presented. This is also the method
used in our current work. Unlike ordinary Harris’ features,
peaks are found spatially as well as in scale, thus making
scale invariance possible. This leads to features accurately
localized spatially, which is essential if features are used for
pose estimation, instead of just matching.

As it can be seen in Fig. 1, the descriptor corresponds to
highly distinctive image locations and is robustly invariant to

Fig. 1. Total 31 matches have been found. A robust estimation process is
used to remove the mismatches as explained in the text.

image plane transformations such as translation, rotation and
scaling. Matching between images is performed using a simple
squared distance measure between descriptors. To make the
matching process more robust, we require that for each pair
of matched points, the match is the best one regarding both
first-second and second-first image pair directions.

B. Epipolar Geometry Estimation

Once matches are available, the position of epipoles can
be estimated. We first start by estimating the fundamental
matrix using the robust approach proposed by Torr [16] called
Maximum a posteriori SAmple Consensus (MAPSAC) which
is based on a well-known 7-point algorithm, [17]. Similar
to RANSAC, the method proceeds by repeatedly calculating
putative solutions from a minimal seven point correspondences
and minimizes an error term for a predefined set of point
combinations. Fig. 2 shows the estimated epipoles and cor-
responding epipolar lines for one of the current-target image
pairs.



Fig. 2. Estimated epipoles and corresponding epipolar lines: current image
(left) and target image (right).

IV. V ISUAL AND MOTION MODELS

The general pinhole camera model considers a calibration
matrix defined as

K =




αx s x0

0 αy y0

0 0 1


 ,

whereαx and αy are the focal length of the camera in pixel
dimensions in thex andy directions respectively;s is the skew
parameter and (x0, y0) are the coordinates of the principal
point. We have thatαx = f mx andαy = f my , where f is the
focal length andmx, my are the pixels per distance unit.

For the approach proposed in this paper, neither a complete
nor an accurate knowledge of the camera calibration parame-
ters is necessary. The important step is to define the desired
trajectories of the epipoles used in the input of the control
law. In practice we can suppose that the principal point is in
the center of the image (x0 = 0, y0 = 0), that there is no skew
(s= 0) and that the camera has squared pixels.

Let us now suppose that the state of the robot is given by
its position and orientation coordinatesx = (x,z,θ)T . From
the perspective projection of Fig. 3, thex-coordinates of the
epipole in the current image (ecx) can be expressed as a
function of the state of the robot as

ecx = αx
xcosθ−zsinθ
zcosθ+xsinθ

. (1)

In a similar way (Fig. 3) we have the epipolex-coordinates
in the target image (etx) as

etx = αx
x
z

. (2)

Let us also suppose that the nonholonomic differential
kinematics to be expressed in a general way as

ẋ = f (x,u)
y = h(x)

and let us consider the problem of visual servoing as a tracking
problem in a nonlinear system. The particular nonholonomic
differential kinematics of the robot expressed in state space
representation as a function of the translation and rotation
speeds (v,ω) is as follows

Fig. 3. Geometric relations forecx (left) and etx (right). Cc andCt are the
current and target camera positions respectively.

Fig. 4. Geometric relations forθ andψ.
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ż
θ̇


 =




vsinθ
vcosθ

ω




y = [ecx etx]
T

(3)

From Fig. 4 we can deduce the next geometric relations

z = dsinψ
x = dcosψ
d2 = x2 +z2

(4)

V. CONTROL LAW

The objective is to carry out the control of the system
by using only the epipoles coordinates as input. Then the
visual servoing is transformed in a tracking problem where
the desired trajectories of the epipoles are defined. With the
appropriately defined trajectories of the epipoles we propose
a control law which allows a direct navigation towards the
target pose. This is also one of the strongest contributions of
our work compared to previously reported approaches.

As the system is nonlinear, an input-output linearization
is made. This linearization is carried out by differentiating
the system outputs until the inputs appear explicitly, and then
solving for the control inputs. So, for the epipole in the current
position according to (1), we have

ėcx =
∂ecx

∂t
=

∂
∂t

(
αx

xcosθ−zsinθ
zcosθ+xsinθ

)
.

Using (3) and (4) after the differentiation, it follows

ėcx =−v
αx cos(θ+ψ)
dsin2(θ+ψ)

−ω
αx

sin2(θ+ψ)
. (5)



Similarly for the epipole in the target image (2) we have

ėtx =
∂etx

∂t
=

∂
∂t

(
αx

x
z

)
= αx

ẋz−xż
z2 .

Again, using (3) and (4) it follows that

ėtx =−v
αx cos(θ+ψ)

dsin2 ψ
. (6)

With the expressions just deduced, we can write a linear
relation between the linearized input and the output as[

νc

νt

]
= E

[
v
ω

]
,

whereνc andνt , which are defined later, are functions depend-
ing onėcx andėtx respectively. From (5) and (6) the decoupling
matrix obtained is

E =


 −αx cos(θ+ψ)

dsin2(θ+ψ)
− αx

sin2(θ+ψ)

−αx cos(θ+ψ)
dsin2 ψ

0


 ,

with ψ = arctan(αx/etx) andθ = arctan(αx/ecx)−ψ , (Fig. 4).
Therefore, the input of the system will be obtained as[

v
ω

]
= E−1

[
νc

νt

]
,

where (νc,νt) are the new inputs to be determined. Assuming
the control objective to be the output to track the set point
output ėdes

cx , ėdes
tx we can make

[
νc

νt

]
=

[
ėdes

cx −kc(ecx−edes
cx )

ėdes
tx −kt(etx−edes

tx )

]
,

with kc and kt the controller gains. In a similar way as
presented in [10] this results in a exponentially stable error
dynamics.

This control law needs the matrixE to be invertible. From
det(E) = −α2

x cos(θ + ψ)/(dsin2 ψsin2(θ + ψ)) we have that
the matrixE is singular if(θ+ψ) = 90◦ (which is equivalent
to ecx = 0). Our objective is to perform a motion with the
robot aligned with the baseline, only when it is not aligned
the control law needs to correct the orientation; otherwise the
robot moves forward with a constant velocity, avoiding the
singularity of the decoupling matrix. The distance between
the current and target camera (d) is unknown, but it can
be replaced with a constant parameter without affecting the
convergence of the system.

The behavior of the robot fully depends on the desired
trajectories of the epipoles. Now, different possibilities can
be followed in order to select the trajectories depending on
the desired robot motion. The trajectory of each epipole is
implemented as a set of trajectories which make the epipoles
to evolve accordingly (Fig. 5)

edes
cx (t) =

{
(ecx(0)−x0)( t2

T2
c
− 2t

Tc
+1)+x0 i f 0≤ t < Tc

x0 i f t ≥ Tc

edes
tx (t) = etx(0) ∀ t .

(7)
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Fig. 5. Desired trajectories of the epipoles.

The idea is first to perform a rotation untilecx = x0 while
etx = constant. After this step, when the time reachesTc, the
robot is aligned with the baseline and the current camera is
pointing to the target. Next, the robot moves in a straight
trajectory until the target is reached. More detail can be found
in our previous work [18].

When the robot is close to the target, the epipolar geometry
is not well defined. In our approach, the robot reaches the
target without the desired orientation and we cannot correct
for this rotation error by using a control law based on epipolar
geometry. Therefore, an additional procedure is needed to
correct the final error in the target position and in this case,
a homography based control can be used [8]. This is a viable
solution since close to the target, one can assume that the
environment is partially planar. The next section provides an
example of how this problem was solved in the current work.

VI. EXPERIMENTAL EVALUATION

Simulated and real experiments have been carried out to
show the validity and the performance of the approach. Simu-
lation experiments demonstrate the response of the control law
under different conditions and the real experiments demon-
strate the good performance of the method in a real, domestic
environment.

Observing the navigation sequence, the resulting motion can
be divided in three phases. The first one consists in the rotation
of the robot at the initial position until it points to the target.
Next, the robot moves straight to the target position. Finally,
it rotates to reach the desired orientation. The first and second
phase are carried out together by the control law. However, the
last phase cannot be accomplished by the control law since
in this position the epipolar geometry is not well defined.
Therefore, a correlation scheme based on the image features is
used in this phase instead. The transition between the control
law and the correlation scheme occurs when the values of the
epipoles change suddenly over a threshold, pointing out that
the epipolar geometry is no more well defined. The value of
the threshold is determined experimentally taking into account
that the epipoles will be computed with noise.

A. Simulation Results

The simulated data consists in a synthetic scene of random
points which are generated and projected on the image planes
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Fig. 6. Robot rotation and path with image white noise ofσ = 0.1 (solid
line) and 2 (dashed line) pixels.

0 10 20 30 40 50 60
−100

−50

0

50

100

150

200

250

300

Time (s)

E
pi

po
le

s 
(p

ix
el

)

current
target

Fig. 7. Epipoles evolution with image white noise ofσ = 0.1 and 2 pixels.

in each iteration of the navigation. The size of the images
produced by the virtual camera is320× 240 pixels. Then,
the epipolar geometry is computed from the point matches.
For the following simulations the start position considered is
(x,z,θ) = (−2,−10,5◦) and the target position is(0,0,0◦).

In the first experiment, white noise has been added to
the image points and the experiment has been repeated with
different values of standard deviation (σ). The rotation, the
path and the epipoles are represented in Fig. 6 and Fig. 7
with the different results superposed. The results show that the
navigation with the control law is robust to image noise. As
said, the epipolar geometry is ill-conditioned when the baseline
is too short; it can be seen in Fig. 7, where the fundamental
matrix does not give good values for the epipoles in the last
phase of the motion (from 40 seconds on).

In the second experiment the real focal length is modified
with different values while the control law holdsf = 6 mm.
The objective is to show the robustness to calibration errors.
In fact, the results show that is not necessary to know the focal
length. The path obtained is the same in all the cases (Fig. 8)
and the only effect is a proportional variation in the output
of the control law. This can be solved with the appropriate
setting of the controller gains.

The third experiment is carried out with the assumption
that thex coordinate of the principal point isx0 = 0 while its
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Fig. 8. Robot rotation and path withf = 6, 16 and 26 mm.
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Fig. 9. Robot rotation and path withx0 = 0, 100 and 200 pixels.

real value is changed. Fig. 9 reveals that there is a lateral
error in the position without any rotation error depending
on the inaccuracy ofx0. This is because the expression for
the desired trajectories of the epipoles in the input of the
control law according to (7) depends onx0. Hence, if the
final desired position of the current epipole is the principal
point, its inaccuracy is propagated to the control, resulting in
the lateral error. On the other hand, the target epipole is set to
remain constant independently of the principal point, helping
to decrease the final lateral error.

B. Experimental Platform

The experimental platform is a PowerBot from ActivMedia
(Fig. 10). It has a nonholonomic differential drive base with
two rear caster wheels. The robot is equipped with a SICK
LMS200 laser scanner placed low in the front, a sonar ring
with 28 Polaroid sensors, a Canon VC-C4 pan-tilt-zoom CCD
camera mounted on top of the laser scanner and a firewire
camera on the last joint of a 6 DOF arm.

In the experiments the platform is controlled by sending
translation and rotational speeds(v,ω). The vision control loop
has not yet been optimized and it currently runs at 0.5Hz.
Therefore, the velocities have to be quite low. The maximum
translation velocity is set to 0.04m/s and the maximum rotation
velocity is set to 0.02rad/s.

C. Real World Experiments

The real world experiments are performed with the above
platform in a domestic setting. It has to be mentioned that no
particular knowledge of the environment, other than the image
from the desired pose, is provided.

The camera calibration parameters are completely unknown.
The values of the calibration parameters are set freely without
performing calibration and these aref = 6 mm for the focal



Fig. 10. The experimental platform: ActiveMedia’s PowerBot.

length andx0 = 0 for the principal point. The size of the images
is 320×240 pixels.

Fig. 11 shows the evolution of an experiment with the
images taken during the navigation, where (a) is the image
taken in the initial position, (b-i) some navigation images and
(j) the target image previously taken. The final image is shown
in Fig. 11(i) comparing it with the target image in Fig. 11(j).

Results from one of the experimental runs are shown in
Fig. 12. The lateral distance to the target (a) and depth distance
(b) shows the robot position evolution and (c) shows the
rotation. As expected the robot moves directly toward the
target along the shortest path (d). The position data have been
obtained from the robot odometry. The final position error
obtained is 8 cm inx-coordinate, 11 cm inz-coordinate and
negligible rotation error. This deviation is due to the fact that
the camera is not mounted on the rotation axis of the robot.
Thus, when the robot rotates in the final position around the
rotation axis of the robot instead of rotating around the center
of the camera the translational error is added. The evolution
of the epipoles is shown in (e). The number of SIFT matches
found in each step is shown in (f). As expected the number of
matches increase with the similarity of the current and target
image as the robot advance to the target. Note here that there
is a checkerboard pattern put in the scene, in order to show
that the feature matching process is robust even with respect
to repetitive patterns.

VII. C ONCLUSION

The benefits of visual servoing in mobile manipulation
settings have been widely acknowledged. It is our belief that
for this purpose both holonomic and nonholonomic constraints
have to be considered. In addition, methods that do not require
any special modelling of the environment and those that do
not consider the use of fiducial markers are of significant
importance.

In this paper, we have presented a visual servoing method
for nonholonomic mobile platforms based on epipolar ge-
ometry. The control law implemented is obtained from the

(a) Initial image (b)

(c) (d)

(e) (f)

(g) (h)

(i) Last image (j) Target image

Fig. 11. A sequence of images taken during an experiment.

input-output linearization of the system. The basic idea is
to servo the robot to the target position by simultaneously
tracking the desired trajectories of the epipoles in the current
and target image. An automatic robust feature detection and
matching process is performed for the estimation of the
fundamental matrix to obtain the epipoles. This process is
based on matching scale and rotation invariant feature points
in order to allow successful control under significant scale
changes.

It has been shown that the presented approach does not
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Fig. 12. A real experiment with start position at(1.27,−2.1,1◦) and target position at(0,0,0◦).

require complete camera calibration or any particular knowl-
edge about the environment. With only a target image taken
at the desired position the controller executes a straight robot
motion directly towards the target. Real experiments have been
performed in a realistic indoor setting to show the validity of
the approach. Simulations and real experiments have proven
robustness of the method to image noise.

One of the current research issues that we are pursuing
is the development of a controller able to switch between
the epipolar geometry based control and a homography based
control for the cases where the fundamental matrix becomes
ill conditioned. In this case the same visual feature detection
algorithm can be used.
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